Article 9421

Title of the article

Calculation of the electrons’ magnetic moment in unmodulated silicene 

Authors

Vitaliy V. Karpunin, Candidate of physical and mathematical sciences, associate professor, associate professor of the sub-department of physics and methods of teaching physics, Mordovia State Pedagogical University named after M.E. Evseviev (11a Studencheskaya street, Saransk, Russia), karpuninvv@mail.ru

Index UDK

537.61

DOI

10.21685/2072-3040-2021-4-9

Abstract

Background. Recently, the magnetic properties of monolayers of various nanostructures have been extensively studied. As it is known, silicene is a single layer silicon film. Silicene is an analogue of graphene, which has a honeycomb geometric structure. The purpose of this work is to calculate the magnetic moment of electrons in unmodulated silicene. Materials and methods. The calculation of the magnetic moment is based on the thermodynamic potential Ω. Knowing the energy spectrum of electrons, it is possible to calculate both the thermodynamic potential and the magnetic moment. Results. An analytical expression for the magnetic moment is obtained, its dependence on the magnetic field is analyzed. Conclusions. The results obtained make it possible to assert that this method of calculating the magnetic moment applied to a three-dimensional electron gas can also be applied to various nanostructures. 

Key words

magnetic moment, thermodynamic potential, arsenene, partition function 

 Download PDF
References

1. Shakouri Kh., Vasilopoulos P., Vargiamidis V., Peeters F.M. Spin- and valleydependent magnetotransport in periodically modulated silicene. Phys. Rev. B. 2014;90:125444-1–125444-11.
2. Villarreal J., Escudero F., Ardenghi J.S., Jasen P. Effect of an external electric field on local magnetic moments in silicene. Journal of Magnetism and Magnetic Materials. 2021;524:167598-1–167598-7.
3. Luo Yi, Wang Sake, Li Shaohan, Sun Zhengming, Yu Jin, Tang Wencheng, Sun Minglei. Transition metal doped puckered arsenene: Magnetic properties and potential
as a catalyst. Physica E: Low-dimensional Systems and Nanostructures. 2019;108:153– 159.
4. Gong X., Liu K., Ye Z., Lu S., [et al.]. Tuning the structural and electronic properties of arsenene monolayers by germanene, silicene, and stanene domain doping. Physica E: Low-dimensional Systems and Nanostructures. 2020;122:114152-1–114152-6.
5. Li Wen Zhong, Liu Ming Yang, Gong Long, Chen Quin Yuan [et al.]. Emerging various electronic and magnetic properties of silicene by light earth metal substituted
doping. Superlattices and Microstructures. 2020;148:106712-1–106712-11.
6. Kamal C., Ezawa M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B. 2015;91:085423-1–085423-10.
7. Margulis V.A., Karpunin V.V., Mironova K.I. Magnetic response of a quantum wire of elliptical cross-section in a magnetic field perpendicular to the axis of the wire.
Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):244–251.
8. Margulis V.A., Karpunin V.V., Mironova K.I. Magnetic moment of single layer graphene rings. Solid State Communications. 2018;269:108–111.
9. Karpunin V.V., Khvastunov N.N. Magnetic properties of the electrons in a phosphorene monolayer. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(5):536–539.
10. Kecik D., Durgun E., Ciraci S. Stability of single-layer and multilayer arsenene and their mechanical and electronic properties. Phys.Rev.B.2016;94:205409-1–205409-9.
11. Kecik D., Durgun E., Ciraci S. Optical properties of single-layer and bilayer arsenene phases. Phys. Rev. B. 2016;94:205410-1–205410-9.
12. Li Y., Xia C., Wang T., Tan X. [et al.]. Light adatoms influences on electronic structures of the two-dimensional arsenene nanosheets. Solid State Communications.
2016;230:6–10.
13. Luo Yanwei, Li Yuxiao, Wang Fei, Guo Peng [et al.]. Electric field effects on electronic characteristics of arsenene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures. 2017;94:64–69.
14. Sharma S., Kumar S., Schwingenschlögl U. Arsenene and Antimonene: Two- Dimensional Materials with High Thermoelectric Figures of Merit. Phys. Rev. Applied.
2017;8:044013-1–044013-8.
15. Zeraati M., Vaez Allaei S. M., Abdolhosseini Sarsari I., Pourfath M. [et al.]. Highly anisotropic thermal conductivity of arsenene: An ab initio study. Phys. Rev. B.
2016;93:085424-1–085424-6.
16. Rumer Yu.B. On the theory of electron gas magnetism. Zhurnal eksperimental'noy i teoreticheskoy fiziki = Journal of experimental and theoretical physics.
1948;18(12):1081–1095. (In Russ.)
17. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series, Elementary Functions. New York: Gordon and Breach, 1986:808.

 

Дата создания: 19.01.2022 11:16
Дата обновления: 19.01.2022 13:44